
Engineering Maintainable
WordPress Websites
Toru Miki

WordCamp Taiwan 2025

Not updated.
Cannot update.

Updates breaks custom codes.
 10,000 errors per minute.

No one know why plugin x is used.
…etc

// Main Unit Update Notification OFF
add_filter('pre_site_transient_update_core', '__return_zero');
remove_action('wp_version_check', 'wp_version_check');
remove_action('admin_init', ‘_maybe_update_core');

// Plugin Update Notification OFF
add_filter("pre_site_transient_update_plugins", "__return_null");

// Hide Unnecessary Menus
add_action('admin_menu', 'remove_menus');
function remove_menus()
{
 remove_menu_page(‘index.php’);
 . . .
}

Built to work, not to last.

Maintained to just run, not to
improve.

Surely, maintainability matters.
Let’s not create long term pains for

both us and clients.

• Logs

• Principles of Plugin Selection

• Separation of Concerns

• Development Practices

Error Logs are Gold

Error Logs are Gold

Stop relying on guessworks!

Error Logs are Gold

• Logs tell you what actually happened — not what you think
happened.

• Stop relying on guesswork!

• Make sure logs are accessible and viewable

• Make it part of your workflow

Principles of Plugin Selection

Principles of Plugin Selection

Look beyond the feature list to evaluate long-
term viability

Principles of Plugin Selection

• Responsively maintained. Timely fixes (esp. security issues), and
honest support. Not flashy but reliable.

• Prefer single-purpose. Opt for focused solutions. Avoid bloated.

• Secure, well-written (and scalable) code. Quality matters.

• Always keep in mind: You are effectively handing off functionality
and maintenance of this feature completely to someone else!
JA: 丸投げ ZH-Hant: 丟包

Separation of Concerns

Separation of Concerns

Organize code so each part has a clear, single
responsibility

Separation of Concerns

• Good Practices

• Keep each function, class, or file focused on a single, well-defined
purpose. (Single Responsibility Principle, SRP)

• Theme = Presentation. Plugin = Functionality.

• Custom features in dedicated, single-purpose plugin.

• Functionality is visible and discoverable.

Separation of Concerns

• Bad Practices

• Functions, classes and files handling multiple unrelated tasks.

• Custom features buried inside functions.php

• Mixing presentation and logic. E.g. custom post type defined in
the theme

• Hard to see what custom functionality exists or where it lives

Development Practices

Development Practices

Adopt tools and workflows from the border
software engineering world

Development Practices

• Version Control

• Use Git to track every change and maintain a clear, revertible
history.

• Pull Request (PR) based workflow

• Work through PR (even solo) to group related changes and trigger
automations.

Development Practices

• Static Analysis

• PHPCS

• ESLint

• Stylelint

• Testing

• Unit test, visual regression test, etc.

• Where possible. Prevent regressions, and ensure stability.

Development Practices

• Documentation

• Write lightweight docs to ease future maintenance.

• PHPDocs

• CI/CD

• PR triggers running of the static analysis and tests.

• Safer deployments — no need to manually update.

• GitHub Actions.

Let’s raise the bar

— Software Engineering at Google

23

