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Not updated.
Cannot update.
Updates breaks custom codes.
10,000 errors per minute.

No one know why plugin x is used.
e €TC




// Main Unit Update Notification OFF
add_filter('pre_site_transient_update_core', '__return_zero');
remove_action('wp_version_check', 'wp_version_check');
remove_action('admin_init', ‘_maybe_update_core');

// Plugin Update Notification OFF
add_filter("pre_site_transient_update_plugins"”, "__return_null");

// Hide Unnecessary Menus
add_action('admin_menu', 'remove_menus');
function remove_menus()

{

remove_menu_page( ‘index.php’);



Built to work, not to last.

Maintained to just run, not to
Improve.




Surely, maintainability matters.
Let’s not create long term pains for
both us and clients.
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Principles of Plugin Selection
Separation of Concerns

Development Practices



Error Logs are Gold




Error Logs are Gold

Stop relying on guessworks!



Error Logs are Gold

* [ ogs tell you what actually happened — not what you think
happened.

* Stop relying on guesswork!

e Make sure logs are accessible and viewable

e Make it part of your workflow




Principles of Plugin Selection




Principles of Plugin Selection

Look beyond the feature list to evaluate long-
term viability




Principles of Plugin Selection

e Responsively maintained. Timely fixes (esp. security issues), and

honest support. Not flashy but reliable.
e Preter single-purpose. Opt for focused solutions. Avoid bloated.
e Secure, well-written (and scalable) code. Quality matters.

e Always keep in mind: You are effectively handing off tunctionality

and maintenance of this feature completely to someone else!
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Separation of Concerns




Separation of Concerns

Organize code so each part has a clear, single
responsibility



Separation of Concerns

e (Good Practices

e Keep each function, class, or tile focused on a single, well-defined

ourpose. (Single Responsibility Principle, SRP)
e Theme = Presentation. Plugin = Functionality.

e Custom features in dedicated, single-purpose plugin.

e Functionality is visible and discoverable.




Separation of Concerns

e Bad Practices
* Functions, classes and tiles handling multiple unrelated tasks.
e Custom features buried inside functions.php

e Mixing presentation and logic. E.g. custom post type detfined in

the theme

* Hard to see what custom functionality exists or where it lives




Development Practices




Development Practices

Adopt tools and workflows from the border
software engineering world




Development Practices

e \ersion Control

e Use Git to track every change and maintain a clear, revertible

history.
e Pull Request (PR) based workflow

e \Work through PR (even solo) to group related changes and trigger

automations.




Development Practices

e Static Analysis

o PHPCS

o ESLint

e Stylelint
* Jesting

e Unittest, visual regression test, etc.

* \Where possible. Prevent regressions, and ensure stability.




Development Practices

e Documentation
e Write lightweight docs to ease future maintenance.
e PHPDocs

e CI/CD
e PR triggers running of the static analysis and tests.

e Safer deployments — no need to manually update.

e GitHub Actions.




Let’s raise the bar




— Software Engineering at Google
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