Engineering Maintainable
WordPress Websites

Toru Miki

WordCamp Taiwan 2025

Not updated.
Cannot update.
Updates breaks custom codes.
10,000 errors per minute.

No one know why plugin x is used.
e €TC

// Main Unit Update Notification OFF
add_filter('pre_site_transient_update_core', '__return_zero');
remove_action('wp_version_check', 'wp_version_check');
remove_action('admin_init', ‘_maybe_update_core');

// Plugin Update Notification OFF
add_filter("pre_site_transient_update_plugins"”, "__return_null");

// Hide Unnecessary Menus
add_action('admin_menu', 'remove_menus');
function remove_menus()

{

remove_menu_page(‘index.php’);

Built to work, not to last.

Maintained to just run, not to
Improve.

Surely, maintainability matters.
Let’s not create long term pains for
both us and clients.

Logs
Principles of Plugin Selection
Separation of Concerns

Development Practices

Error Logs are Gold

Error Logs are Gold

Stop relying on guessworks!

Error Logs are Gold

* [ogs tell you what actually happened — not what you think
happened.

* Stop relying on guesswork!

e Make sure logs are accessible and viewable

e Make it part of your workflow

Principles of Plugin Selection

Principles of Plugin Selection

Look beyond the feature list to evaluate long-
term viability

Principles of Plugin Selection

e Responsively maintained. Timely fixes (esp. security issues), and

honest support. Not flashy but reliable.
e Preter single-purpose. Opt for focused solutions. Avoid bloated.
e Secure, well-written (and scalable) code. Quality matters.

e Always keep in mind: You are effectively handing off tunctionality

and maintenance of this feature completely to someone else!
JA: IS ZH-Hant: &EE

Separation of Concerns

Separation of Concerns

Organize code so each part has a clear, single
responsibility

Separation of Concerns

e (Good Practices

e Keep each function, class, or tile focused on a single, well-defined

ourpose. (Single Responsibility Principle, SRP)
e Theme = Presentation. Plugin = Functionality.

e Custom features in dedicated, single-purpose plugin.

e Functionality is visible and discoverable.

Separation of Concerns

e Bad Practices
* Functions, classes and tiles handling multiple unrelated tasks.
e Custom features buried inside functions.php

e Mixing presentation and logic. E.g. custom post type detfined in

the theme

* Hard to see what custom functionality exists or where it lives

Development Practices

Development Practices

Adopt tools and workflows from the border
software engineering world

Development Practices

e \ersion Control

e Use Git to track every change and maintain a clear, revertible

history.
e Pull Request (PR) based workflow

e \Work through PR (even solo) to group related changes and trigger

automations.

Development Practices

e Static Analysis

o PHPCS

o ESLint

e Stylelint
* Jesting

e Unittest, visual regression test, etc.

* \Where possible. Prevent regressions, and ensure stability.

Development Practices

e Documentation
e Write lightweight docs to ease future maintenance.
e PHPDocs

e CI/CD
e PR triggers running of the static analysis and tests.

e Safer deployments — no need to manually update.

e GitHub Actions.

Let’s raise the bar

— Software Engineering at Google

23

