Engineering Maintainable
WordPress Websites

Toru Miki WordCamp Taiwan 2025



Agenda

Introduction: Why Maintainability Matters
Principles of Plugin Selection

Separation of Concerns

Software Engineering Practices

Al as a Helper

Closing & Takeaways







Why Maintainability Matters

It's an investment in the future of your project and your team

* Future-Proofing: Build sites that can easily adapt to future changes and requirements
* Collaboration: Enable smoother teamwork and painless project handovers

* Audience: This talk is for developers, agencies, and site maintainers







Principles of Plugin Selection

Look beyond the feature list to evaluate long-term viability

Responsively Maintained
Responsive authors, timely fixes (esp. security issues), and honest support — not flashy but reliable.

Prefer Single-Purpose

Avoid bloated "kitchen sink" plugins. Opt for focused solutions that do one thing well.

Secure (and scalable), well-written code
Built with security in mind, using clean practices that prevent fragile or unsafe code - quality matters.




Principles of Plugin Selection

Look beyond the feature list to evaluate long-term viability

Whatever you choose, remember this:

When you use a 3rd-party plugin, you are effectively handing off completely, its functionality and maintenance to
someone else — AP or TEEEFRBIA .

Remember, it’s till your responsibility to handle its impact (updates, break, discontinued, etc).

We find that often 3rd-party plugins are the ones that causes issues in mid-to-long term maintenance support.







Logs (Especially Error Logs)

Stop relying on guessworks!

Always keep logs accessible
They’re the first place to look when something goes wrong.

Error logs are gold
The tell you what actually happened — not what you think happened.

Make it part of your workflow

Check logs after deployments, plugin updates, or unexpected behavior.







Separation of Concerns

A clear division of roles between themes and plugins

Good Practices

Theme = Presentation
Plugin = Functionality

Custom features in dedicated, single-purpose
plugins

Functionality is visible and discoverable

Bad Practice

Functionality

Features which should not be tied to theme is coded
in a theme
All custom logics buried in “functions.php’

Functionality is tightly coupled to a specific theme
Hard to track where custom features live

Fragile custom hacks instead of stable plugins



Separation of Concerns

Eg. Custom code in functions.php







Development Practices

Adopt tools and workflows from the broader software engineering world

Version Control

Use Git to track every change and
maintain a clear, revertible history

Static Analysis

Apply tools like PHPCS and ESLint
to enforce coding standards
automatically

Collaboration
Use GitHub (or similar) for Pull

Request-based workflows and code
reviews

Testing

Add tests where possible to prevent
regressions and ensure stability

Documentation

Write lightweight docs to ease
future maintenance and project
handovers

CI/CD

Set up automated pipelines for
consistent and safe deployments







Al as a Helper, Not a Replacement

Leverage Al to accelerate repetitive tasks, but retain engineering oversight

* Al excels at: Generating boilerplate code, fixing lint errors, and drafting documentation
* Humans are required for: Sound engineering judgment, architecture decisions, and final approval

» Always review and test Al-generated code




06



Key Takeaways

* Maintainable WordPress leads to sustainable business
and developer happiness

* A clean architecture (Separation of Concerns) is your
most powerful tool

* Adopt modern development practices like Git and
code reviews

« Start small. Adopting just one or two new practices
makes a huge difference






