
小主機也能飛：
WordPress × Cloudflare 實戰架構與除錯心法
WordCamp Taiwan 2025 | Steven Tseng

Agenda

01 我的網站怎麼又慢了？

02 三層快取的分工合作

03 別讓快取被「好心」的規則拖慢

04 怎麼知道快取有沒有幫上忙？

05 同一套思路，解更多問題

06 網站最佳化不是一次性的事

我的網站怎麼又慢
了？

情境

• 後台發文要等半天

• 頁面載入速度變慢

• 主機資源耗用顯著提升

WHY

• 安裝了快取外掛，速度也沒改善？

• 快取命中率 (HIT) 大幅降低？

回目錄

三層快取的分工合作 –用餐廳備餐來比喻

桌邊保溫盒 (瀏覽器快取) - 就在客人面前，伸手就有

適合放「常見的小菜」：CSS、JS、Logo、已看過的圖片與頁面

特色：最快、容量最小、由瀏覽器的 Cache-Control 規則決定能放多久

外場出餐檯 (CDN/Cloudflare 邊緣快取) - 開在客人家附近的分店，離客人最近

適合放「熱門主菜」：首頁、文章頁、列表頁、靜態資源

特色：速度快、覆蓋廣，可用 TTL/規則控管；缺菜時才回廚房補貨

廚房內場 (主機端/WordPress 快取)

• 「成品」＝頁面快取 (HTML 靜態化 / FastCGI / Disk cache)

• 「切好料」＝物件快取 (Redis/Memcached，幫 PHP/DB 減少存取與計算)

特色：比「現點現做」快非常多；若連成品都沒有，才會「照食譜」讓 PHP + SQL 現做

三層快取的分工合作 –用餐廳備餐來比喻

桌邊保溫盒 (瀏覽器快取) - 就在客人面前，伸手就有

適合放「常見的小菜」：CSS、JS、Logo、已看過的圖片與頁面

特色：最快、容量最小、由瀏覽器的 Cache-Control 規則決定能放多久

外場出餐檯 (CDN/Cloudflare 邊緣快取) - 開在客人家附近的分店，離客人最近

適合放「熱門主菜」：首頁、文章頁、列表頁、靜態資源

特色：速度快、覆蓋廣，可用 TTL/規則控管；缺菜時才回廚房補貨

廚房內場 (主機端/WordPress 快取)

• 「成品」＝頁面快取（HTML 靜態化 / FastCGI / Disk cache）

• 「切好料」＝物件快取（Redis/Memcached，幫 PHP/DB 少跑計算）

特色：比「現點現做」快非常多；若連成品都沒有，才會「照食譜」讓 PHP + MySQL 現做

使用者發出請求客人點一道菜

瀏覽器有現成就「秒上」先檢查桌邊保溫盒

去外場出餐檯取餐

1. 並在桌邊保溫盒保留

從 CDN 擷取

1. 並保留一份在瀏覽器快取

回中央廚房取餐/備餐

1. 有現成成品就直接裝盤

2. 沒有成品，主廚按照食譜現做餐點

做完同時分裝，補內場、補外場、桌邊也留一份

從頁面外取擷取

1. Cache HIT → 擷取成功

2. Cache Not HIT → 存取主機

完成後 → 頁面快取/CDN/瀏覽器快取

三層快取的分工合作 –用餐廳備餐來比喻

桌邊保溫盒 (瀏覽器快取) - 就在客人面前，伸手就有

適合放「常見的小菜」：CSS、JS、Logo、已看過的圖片與頁面

特色：最快、容量最小、由瀏覽器的 Cache-Control 規則決定能放多久

外場出餐檯 (CDN/Cloudflare 邊緣快取) - 開在客人家附近的分店，離客人最近

適合放「熱門主菜」：首頁、文章頁、列表頁、靜態資源

特色：速度快、覆蓋廣，可用 TTL/規則控管；缺菜時才回廚房補貨

廚房內場 (主機端/WordPress 快取)

• 「成品」＝頁面快取（HTML 靜態化 / FastCGI / Disk cache）

• 「切好料」＝物件快取（Redis/Memcached，幫 PHP/DB 少跑計算）

特色：比「現點現做」快非常多；若連成品都沒有，才會「照食譜」讓 PHP + MySQL 現做

使用者發出請求客人點一道菜

瀏覽器有現成就「秒上」先檢查桌邊保溫盒

去外場出餐檯取餐

1. 並在桌邊保溫盒保留

從 CDN 擷取

1. 並保留一份在瀏覽器快取

回中央廚房取餐/備餐

1. 有現成成品就直接裝盤

2. 沒有成品，主廚按照食譜現做餐點

做完同時分裝，補內場、補外場、桌邊也留一份

從頁面外取擷取

1. Cache HIT → 擷取成功

2. Cache Not HIT → 存取主機

完成後 → 頁面快取/CDN/瀏覽器快取

三層快取的分工合作 –用餐廳備餐來比喻
使用者發出請求客人點一道菜

瀏覽器有現成就「秒上」先檢查桌邊保溫盒

去外場出餐檯取餐

1. 並在桌邊保溫盒保留

從 CDN 擷取

1. 並保留一份在瀏覽器快取

回中央廚房取餐/備餐

1. 有現成成品就直接裝盤

2. 沒有成品，主廚按照食譜現做餐點

做完同時分裝，補內場、補外場、桌邊也留一份

從頁面外取擷取

1. Cache HIT → 擷取成功

2. Cache Not HIT → 存取主機

完成後 → 頁面快取/CDN/瀏覽器快取

命中越前面成本越低

→ 省傳輸、省 CPU/DB 資源

→ 小主機也能幹大事

回目錄

別讓快取被「好心」的規則拖慢

很多快取外掛會自動幫你排除登入、購物車、語言切換、參數…

這些看起來很好心，但有時太過好心反而讓網站變慢、故障。

真正的最佳化，是懂得哪些該排除、哪些可以快取，把資源用在刀口上。

別讓快取被「好心」的規則拖慢

哪些菜「不適合久放」(應該避開快取)

• 個人化與動態內容：

購物車、結帳、會員中心、表單提交 (含驗證碼/Token)、後台頁面、API 回應 (端點路徑)、站內搜尋等。

• Query Loop 參數：

WordPress 核心/各外掛都有，如 SureCart 商品子頁面/結帳頁面、TutorLMS 課程類別篩選、講師頁面等。

哪些能快就快？ (免得廣告一下，流量全部擊中主機)

• 追蹤參數 (行銷/廣告類)：

Google、Facebook、X(Twitter)、Microsoft、Mailchimp、IG、美安、UTM、LINE 等。

別讓快取被「好心」的
規則拖慢

誤區 (Cloudflare)

• 靜態內容 → 忽略查詢字串

→ 導致外掛改版後資源不更新

→ *.css?ver=1 與 *.css?ver=2 被視為同一份

建議

• 用快取規則對 HTML 忽略查詢字串

• 靜態內容保留「依查詢字串變化，每次供

應不同資源」的標準方法

別讓快取被「好心」的
規則拖慢

誤區 (Super Page Cache)

• not http.cookie contains “wp-”

→ 很多外掛、佈景主題都會有這類 cookie

 (即使未登入)

 例如 wp-dark-mode、wp-settings-* 等

→ 只要命中，就會略過快取

建議

• 用精準的登入/購物/評論/個人化 cookie

例如 wordpress_sec_*、wordpressuser_*、

edd_items_in_cart 等

別讓快取被「好心」的
規則拖慢

忽略行銷/廣告類參數容易嗎？

• 有付費就容易

→ Cloudflare Enterprise方案

(Kinsta / FlyingCDN 等)

→ Super Page Cache 外掛 Pro方案

不花錢的方法？

• 繞過外掛的限制，自己設定快取規則

(Cache Rules)

• Cloudflare Workers 修改快取標頭

• Cronjob 快取預熱

別讓快取被「好心」的規則拖慢

繞過外掛的限制，自己設定快取規則 (Cache Rules)

• Cloudflare 快取規則功能強大

• Super Page Cache 外掛降低進入障礙

可以大幅改善行銷/廣告類參數的快取 MISS 問題

但無法解決偶爾發生的略過快取問題：

x-wp-cf-super-cache-disabled-reason = Bypass Query Var

別讓快取被「好心」的規則拖慢

運用 Cloudflare Workers 修改快取標頭

• Cloudflare 邊緣「忽略查詢字串」vs SPC 在原點的判斷不一致

• 在打到原點之前先清理掉追蹤參數

→ 不影響功能參數 (如 ?lang=、?variant=、?products)

→ 不改使用者網址、不轉址，GA/Pixel 能正常運作

→ 以乾淨 URL 當 cacheKey

情境：訪客從 FB 點連結過來 (帶 fbclid)

1. 請求進入 Cloudflare → 先進 Worker

• Worker 偵測到 fbclid，建立「乾淨 URL」(原網址移除追蹤參數)

• 以 cacheKey = 乾淨 URL 發出 fetch (前端網址仍含 fbclid)

2. 邊緣快取查找 (以 cacheKey)

• HIT：Cloudflare 直接回應，不打原點

• MISS：Cloudflare 回源一次取得頁面，並以 cacheKey 寫入邊緣快取

3. 後續所有訪客 (帶參數或不帶參數)，因 cacheKey 一致，統一命中一份邊緣快取、HIT 率提升

1. 只處理 text/heml

2. 清除追蹤參數

[“utm_source”,“utm_medium”,“utm_campaign”,“utm_term”,“utm_

content”,“utm_id”,“utm_source_platform”,“utm_creative_format”,

“utm_marketing_tactic”,“gclid”,“dclid”,“msclkid”,“fbclid”,“wbraid”,

“gbraid”,“igshid”,“mc_eid”,“mc_cid”,“openExternalBrowser”,“twc

lid”,“twclkd”,“gad_source”];

回目錄

怎麼知道快取有沒有幫上忙？

X-Wp-Cf-Super-Cache

• cache – SPC 使用中，頁面快取已啟用

• no-cache – SPC 使用中，頁面快取已停用

X-Wp-Cf-Super-Cache-Active

• 1 – 頁面已存放在 Cloudflare 快取中

Cf-Cache-Status

• HIT – 該頁面已從快取中傳回

• MISS – 快取中未找到該頁面，請刷新頁面

• BYPASS – 該頁面被 SPC 排除

• EXPIRED – 已被緩存，但快取已過期

• DYNAMIC – 頁面中有動態內容，不使用快取

怎麼知道快取有
沒有幫上忙？

情境

• 後台發文不再卡卡

• 頁面載入速度變快

• 主機資源耗用穩定在一個範圍

內

CHECK

• 快取命中率 (HIT) 大幅提高

回目錄

同一套思路，解更多問題

錯一個設定，不是混語系就是卡結帳

怎麼做？

• Cloudflare 快取規則

• 列出需繞過的 Cookie

→ tutor_、comment_、wlmapi、wishlist_reg 等

• 列出需繞過的頁面

→ cart、checkout、account、dashboard 等

• 列出需繞過的動態更新頁面 (Query Loop)

→ ?s=、?keyword=、?look_content_only=、?products= 等

• 列出需繞過的端點

→ ?fluent、?ns_url= 等

• Cloudflare Worker

• 列出不能繞過快取的追蹤參數

回目錄

網站最佳化不是一次性的事

• 快取是有限資源下的最佳幫手

• 規則與檢查方法要並行

• 檢查、調整、測試是循環不斷的過程

什麼時候應該重新檢視？

• 內容變了

• 外掛更新

• 流量模式變

例行性檢查

• 每月用無痕視窗測一次 HIT 率、尖峰時段抽測

• 新增大型功能或改版後，跑一遍「檢查 → 調整 → 測試」

回目錄

Q&A
把你今天的發現回饋給外掛作者或社群。工具會因此變好，你的網站也

會更穩。

這就是 WordPress 生態圈最有價值的地方。

	投影片 1: 小主機也能飛： WordPress × Cloudflare 實戰架構與除錯心法
	投影片 2: Agenda
	投影片 3: 我的網站怎麼又慢了？
	投影片 4: 三層快取的分工合作 – 用餐廳備餐來比喻
	投影片 5: 三層快取的分工合作 – 用餐廳備餐來比喻
	投影片 6: 三層快取的分工合作 – 用餐廳備餐來比喻
	投影片 7: 三層快取的分工合作 – 用餐廳備餐來比喻
	投影片 8: 別讓快取被「好心」的規則拖慢
	投影片 9: 別讓快取被「好心」的規則拖慢
	投影片 10
	投影片 11
	投影片 12
	投影片 13: 別讓快取被「好心」的規則拖慢
	投影片 14: 別讓快取被「好心」的規則拖慢
	投影片 15: 怎麼知道快取有沒有幫上忙？
	投影片 16: 怎麼知道快取有沒有幫上忙？
	投影片 17
	投影片 18: 同一套思路，解更多問題
	投影片 19: 網站最佳化不是一次性的事
	投影片 20: Q&A

